Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.650
Filtrar
1.
J Chromatogr A ; 1722: 464860, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593521

RESUMO

Thanks to the Cassini-Huygens space mission between 2004 and 2017, a lot was learned about Titan, the biggest satellite of Saturn, and its intriguing atmosphere, surface, and organic chemistry complexity. However, key questions about the potential for the atmosphere and surface chemistry to produce organic molecules of direct interest for prebiotic chemistry and life did not find an answer. Due to Titan potential as a habitable world, NASA selected the Dragonfly space mission to be launched in 2027 to Titan's surface and explore the Shangri-La surface region for minimum 3 years. One of the main goals of this mission will be to understand the past and actual abundant prebiotic chemistry on Titan, especially using the Dragonfly Mass Spectrometer (DraMS). Two recently used sample pre-treatments for Gas Chromatography - Mass Spectrometry (GC-MS mode of DraMS) analyses are planned prior analysis to extract refractory organic molecules of interest for prebiotic chemistry and astrobiology. The dimethylformamide dimethylacetal (DMF-DMA) derivatization reaction offers undoubtedly an opportunity to detect biosignatures by volatilizing refractory biological or prebiotic molecules and conserving the chiral carbons' conformation while an enantiomeric excess indicates a chemical feature induced primarily by life (and may be aided on the primitive systems by light polarization). The goal of this study is to investigate the ageing of DMF-DMA in DraMS (and likely MOMA) capsules prior to in situ analysis on Titan (or Mars). The main results highlighted by our work on DMF-DMA are first its satisfactory stability for space requirements through time (no significant degradation over a year of storage and less than 30 % of lost under thermal stress) to a wide range of temperature (0 °C to 250 °C), or the presence of water and oxidants during the derivatization reaction (between 0 and 10 % of DMF-DMA degradation). Moreover, this reagent derivatized very well amines and carboxylic acids in high or trace amounts (ppt to hundreds of ppm), conserving their molecular conformation during the heat at 145 °C for 3 min (0 to 4% in the enantiomeric form change).


Assuntos
Saturno , Estereoisomerismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Dimetilformamida/química , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Voo Espacial
2.
Biotechniques ; 76(5): 169-173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602376

RESUMO

[Formula: see text] Researchers are using various techniques and technologies to study how plants grow in extraterrestrial conditions with the hopes of sustaining longer missions for exploring deep space as well as being able to one day cultivate crops on other planets.


Assuntos
Agricultura , Meio Ambiente Extraterreno , Voo Espacial , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Plantas/genética , Exobiologia/métodos
3.
Sci Adv ; 10(16): eadj7179, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630826

RESUMO

The formation of protein precursors, due to the condensation of atomic carbon under the low-temperature conditions of the molecular phases of the interstellar medium, opens alternative pathways for the origin of life. We perform peptide synthesis under conditions prevailing in space and provide a comprehensive analytic characterization of its products. The application of 13C allowed us to confirm the suggested pathway of peptide formation that proceeds due to the polymerization of aminoketene molecules that are formed in the C + CO + NH3 reaction. Here, we address the question of how the efficiency of peptide production is modified by the presence of water molecules. We demonstrate that although water slightly reduces the efficiency of polymerization of aminoketene, it does not prevent the formation of peptides.


Assuntos
Meio Ambiente Extraterreno , Água , Meio Ambiente Extraterreno/química , Água/química , Peptídeos
6.
Astrobiology ; 24(4): 407-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603526

RESUMO

Recent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH3) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH3 in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars. The production of methane includes formation of the HC · O radical. Our density functional theory (DFT) calculations predict an energetically plausible reaction network leading to PH3, involving either HC · O or H· radicals. We suggest that, similarly to the photochemical formation of methane over acidic minerals already discussed for Mars, the origin of PH3 in Venus' atmosphere could be explained by radical chemistry starting with the reaction of ·PO with HC·O, the latter being produced by reduction of CO2 over acidic dust in upper atmospheric layers of Venus by ultraviolet radiation. HPO, H2P·O, and H3P·OH have been identified as key intermediate species in our model pathway for phosphine synthesis.


Assuntos
Fosfinas , Vênus , Meio Ambiente Extraterreno , Raios Ultravioleta , Processos Fotoquímicos , Atmosfera , Metano
7.
Astrobiology ; 24(4): 343-370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452176

RESUMO

Long-standing unexplained Venus atmosphere observations and chemical anomalies point to unknown chemistry but also leave room for the possibility of life. The unexplained observations include several gases out of thermodynamic equilibrium (e.g., tens of ppm O2, the possible presence of PH3 and NH3, SO2 and H2O vertical abundance profiles), an unknown composition of large, lower cloud particles, and the "unknown absorber(s)." Here we first review relevant properties of the venusian atmosphere and then describe the atmospheric chemical anomalies and how they motivate future astrobiology missions to Venus.


Assuntos
Vênus , Exobiologia , Meio Ambiente Extraterreno , Gases/química , Atmosfera/química
8.
Astrobiology ; 24(S1): S143-S163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498826

RESUMO

All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planeta Terra , Meio Ambiente Extraterreno/química , Planetas , Sistema Solar
9.
Astrobiology ; 24(S1): S202-S215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498825

RESUMO

Planetary protection is a principle in the design of interplanetary missions that aims to prevent biological cross contamination between the target body and Earth. Planetary protection policies and procedures have worked to mitigate forward contamination (from Earth) and back contamination (to Earth) since the beginning of the space age. Today, planetary protection policy is guided by international agreements, nongovernmental advisory councils, and national space agencies. The landscape of planetary protection science and policy is changing rapidly, as new technologies, crewed missions to Mars and the Moon, and even orbital settlements are being developed. Space exploration, whether specifically targeted toward questions in astrobiology or not, must consider planetary protection concerns to minimize contamination that poses a risk to both astrobiological investigations as well as Earth's biosphere. In this chapter, we provide an introduction to and overview of the history, motivations, and implementation of planetary protection in the United States.


Assuntos
Marte , Voo Espacial , Contenção de Riscos Biológicos , Exobiologia , Meio Ambiente Extraterreno , Planetas , Estados Unidos
10.
Sci Adv ; 10(12): eadl0849, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517965

RESUMO

Icy moons like Enceladus, and perhaps Europa, emit material sourced from their subsurface oceans into space via plumes of ice grains and gas. Both moons are prime targets for astrobiology investigations. Cassini measurements revealed a large compositional diversity of emitted ice grains with only 1 to 4% of Enceladus's plume ice grains containing organic material in high concentrations. Here, we report experiments simulating mass spectra of ice grains containing one bacterial cell, or fractions thereof, as encountered by advanced instruments on board future space missions to Enceladus or Europa, such as the SUrface Dust Analyzer onboard NASA's upcoming Europa Clipper mission at flyby speeds of 4 to 6 kilometers per second. Mass spectral signals characteristic of the bacteria are shown to be clearly identifiable by future missions, even if an ice grain contains much less than one cell. Our results demonstrate the advantage of analyses of individual ice grains compared to a diluted bulk sample in a heterogeneous plume.


Assuntos
Meio Ambiente Extraterreno , Júpiter , Gelo , Exobiologia/métodos , Oceanos e Mares
11.
Astrobiology ; 24(S1): S186-S201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498819

RESUMO

While Earth contains the only known example of life in the universe, it is possible that life elsewhere is fundamentally different from what we are familiar with. There is an increased recognition in the astrobiology community that the search for life should steer away from terran-specific biosignatures to those that are more inclusive to all life-forms. To start exploring the space of possibilities that life could occupy, we can try to dissociate life from the chemistry that composes it on Earth by envisioning how different life elsewhere could be in composition, lifestyle, medium, and form, and by exploring how the general principles that govern living systems on Earth might be found in different forms and environments across the Solar System. Exotic life-forms could exist on Mars or Venus, or icy moons like Europa and Enceladus, or even as a shadow biosphere on Earth. New perspectives on agnostic biosignature detection have also begun to emerge, allowing for a broader and more inclusive approach to seeking exotic life with unknown chemistry that is distinct from life as we know it on Earth.


Assuntos
Meio Ambiente Extraterreno , Júpiter , Meio Ambiente Extraterreno/química , Exobiologia , Sistema Solar , Planeta Terra
12.
Astrobiology ; 24(S1): S57-S75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498821

RESUMO

The materials that form the diverse chemicals and structures on Earth-from mountains to oceans and biological organisms-all originated in a universe dominated by hydrogen and helium. Over billions of years, the composition and structure of the galaxies and stars evolved, and the elements of life, CHONPS, were formed through nucleosynthesis in stellar cores. Climactic events such as supernovae and stellar collisions produced heavier elements and spread them throughout the cosmos, often to be incorporated into new, more metal-rich stars. Stars typically form in molecular clouds containing small amounts of dust through the collapse of a high-density core. The surrounding nebular material is then pulled into a protoplanetary disk, from which planets, moons, asteroids, and comets eventually accrete. During the accretion of planetary systems, turbulent mixing can expose matter to a variety of different thermal and radiative environments. Chemical and physical changes in planetary system materials occur before and throughout the process of accretion, though many factors such as distance from the star, impact history, and level of heating experienced combine to ultimately determine the final geophysical characteristics. In Earth's planetary system, called the Solar System, after the orbits of the planets had settled into their current configuration, large impacts became rare, and the composition of and relative positions of objects became largely fixed. Further evolution of the respective chemical and physical environments of the planets-geosphere, hydrosphere, and atmosphere-then became dependent on their local geochemistry, their atmospheric interactions with solar radiation, and smaller asteroid impacts. On Earth, the presence of land, air, and water, along with an abundance of important geophysical and geochemical phenomena, led to a habitable planet where conditions were right for life to thrive.


Assuntos
Planetas , Sistema Solar , Planeta Terra , Atmosfera/química , Planetas Menores , Evolução Planetária , Meio Ambiente Extraterreno/química
13.
Astrobiology ; 24(S1): S164-S185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498822

RESUMO

The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas , Planeta Terra
14.
Astrobiology ; 24(S1): S124-S142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498824

RESUMO

Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.


Assuntos
Planeta Terra , Meio Ambiente Extraterreno , Exobiologia
15.
Astrobiology ; 24(S1): S1-S3, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498827
16.
Astrobiology ; 24(3): 230-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507695

RESUMO

As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.


Assuntos
Marte , Voo Espacial , Humanos , Meio Ambiente Extraterreno , Exobiologia , Contenção de Riscos Biológicos , Astronave
17.
Bioinspir Biomim ; 19(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38452382

RESUMO

The exploration of the planet Mars still is a top priority in planetary science. The Mars surface is extensively covered with soil-like material. Current wheeled rovers on Mars have been occasionally experiencing immobilization instances in unexpectedly weak terrains. The development of Mars rovers adaptable to these terrains is instrumental in improving exploration efficiency. Inspired by locomotion of the desert lizard, this paper illustrates a biomimetic quadruped robot with structures of flexible active spine and toes. By accounting for spine lateral flexion and its coordination with four leg movements, three gaits of tripod, trot and turning are designed. The motions corresponding to the three gaits are conceptually and numerically analyzed. On the granular terrains analog to Martian surface, the gasping forces by the active toes are estimated. Then traversing tests for the robot to move on Martian soil surface analog with the three gaits were investigated. Moreover, the traversing characteristics for Martian rocky and slope surface analog are analyzed. Results show that the robot can traverse Martian soil surface analog with maximum forward speed 28.13 m s-1turning speed 1.94° s-1and obstacle height 74.85 mm. The maximum angle for climbing Martian soil slope analog is 28°, corresponding slippery rate 76.8%. It is predicted that this robot can adapt to Martian granular rough terrain with gentle slopes.


Assuntos
Marte , Robótica , Meio Ambiente Extraterreno , Biomimética , Solo
18.
Astrobiology ; 24(3): 283-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377582

RESUMO

Modeling the detection of life has never been more opportune. With next-generation space telescopes, such as the currently developing Habitable Worlds Observatory (HWO) concept, we will begin to characterize rocky exoplanets potentially similar to Earth. However, few realistic planetary spectra containing surface biosignatures have been paired with direct imaging telescope instrument models. Therefore, we use a HWO instrument noise model to assess the detection of surface biosignatures affiliated with oxygenic, anoxygenic, and nonphotosynthetic extremophiles. We pair the HWO telescope model to a one-dimensional radiative transfer model to estimate the required exposure times necessary for detecting each biosignature on planets with global microbial coverage and varying atmospheric water vapor concentrations. For modeled planets with 0-50% cloud coverage, we determine pigments and the red edge could be detected within 1000 hr (100 hr) at distances within 15 pc (11 pc). However, tighter telescope inner working angles (2.5 λ/D) would allow surface biosignature detection at further distances. Anoxygenic photosynthetic biosignatures could also be more easily detectable than nonphotosynthetic pigments and the photosynthetic red edge when compared against a false positive iron oxide slope. Future life detection missions should evaluate the influence of false positives on the detection of multiple surface biosignatures.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Exobiologia/métodos , Planetas , Planeta Terra , Oxigênio
19.
Sci Total Environ ; 922: 171217, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417521

RESUMO

This paper explores the potential of Technosols made from non-hazardous industrial wastes as a sustainable solution for highly acidic iron-rich soils at the Rio Tinto mining site (Spain), a terrestrial Mars analog. These mine soils exhibit extreme acidity (pHH2O = 2.1-3.0), low nutrient availability (non-acid cation saturation < 20 %), and high levels of Pb (3420 mg kg-1), Cu (504 mg kg-1), Zn (415 mg kg-1), and As (319 mg kg-1), hindering plant growth and ecosystem restoration. To address these challenges, the study systematically analyzed selected waste materials, formulated them into Technosols, and conducted a four-month pot trial to evaluate the growth of Brassica juncea under greenhouse conditions. Technosols were tailored by adding varying weight percentages of waste amendments into the mine Technosol, specifically 10 %, 25 %, and 50 %. The waste amendments comprised a blend of organic waste (water clarification sludge, WCS) and inorganic wastes (white steel slag, WSS; and furnace iron slag, FIS). The formulations included: (T0) exclusively mine Technosol (control); (T1) 60 % WCS + 40 % WSS; (T2) 60 % WCS + 40 % FIS; and (T3) 50 % WCS + 16.66 % WSS + 33.33 % FIS. The analyses covered leachate quality, soil pore water chemistry, and plant response (germination and survival rates, plant height, and leaf number). Results revealed a significant reduction in leachable contaminant concentrations, with Pb (26.16 mg kg-1), Zn (4.94 mg kg-1), and Cu (2.29 mg kg-1) dropping to negligible levels and shifting towards less toxic species. These changes improved soil conditions, promoting seed germination and seedling growth. Among the formulations tested, Technosol T1 showed promise in overcoming mine soil limitations, enhancing plant adaptation, buffering against acidification, and stabilizing contaminants through precipitation and adsorption mechanisms. The paper stresses the importance of tailoring waste amendments to specific soil conditions, and highlights the broader implications of the Technosol approach, such as waste valorization, soil stabilization, and insights for Brassica juncea growth in extreme environments, including Martian soil simulants.


Assuntos
Marte , Poluentes do Solo , Ferro/análise , Solo , Ecossistema , Meio Ambiente Extraterreno , Chumbo/análise , Plantas , Água/análise , Poluentes do Solo/análise
20.
Sci Rep ; 14(1): 3691, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355968

RESUMO

The universe is a vast store of organic abiotic carbon that could potentially drive heterotrophy on habitable planets. Meteorites are one of the transporters of this carbon to planetary surfaces. Meteoritic material was accumulating on early Earth when life emerged and proliferated. Yet it is not known if this organic carbon from space was accessible to life. In this research, an anaerobic microbial community was grown with the CM2 carbonaceous chondrite Aguas Zarcas as the sole carbon, energy and nutrient source. Using a reversed 13C-stable isotope labelling experiment in combination with optical photothermal infrared (O-PTIR) spectroscopy of single cells, this paper demonstrates the direct transfer of carbon from meteorite into microbial biomass. This implies that meteoritic organics could have been used as a carbon source on early Earth and other habitable planets, and supports the potential for a heterotrophic metabolism in early living systems.


Assuntos
Carbono , Meteoroides , Carbono/química , Planeta Terra , Planetas , Meio Ambiente Extraterreno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...